Reitir í $n \times n$ borði eru númeraðir með tölunum frá $1$ upp í $n^2$ á sama hátt og sýnt er í dæminu fyrir $n=5$ hér til hliðar. Nú er valin ein tala úr hverri röð, en þó þannig að engar tvær
þeirra séu í sama dálki. Hvaða útkomur eru mögulegar þegar völdu tölurnar eru lagðar saman?
Faraóinn Jörmunrekur II var búinn að láta höggva $1000$ teningslaga steinblokkir, allar jafnstórar. Úr þessum blokkum átti að reisa píramíta með ferningslaga grunni. Fyrsti píramítinn sem var reistur
var tveggja hæða, svo var reistur þriggja hæða og svo koll af kolli (sjá mynd). Þegar framkvæmdir höfðu staðið yfir um skeið uppgötvaði Jörmunrekur að hann ætti ekki eftir nógu margar blokkir til að klára næsta píramíta.
Talnamengin $A_1, A_2, A_3,\ldots$ eru mynduð samkvæmt
eftirfarandi mynstri:
$$A_1=\{1\},\, A_2=\{2, 3\},\, A_3=\{4, 5, 6\},\, A_4=\{7, 8, 9, 10\}, \ldots$$
Hver er summa talnanna í menginu $A_{21}$?
Notaðar eru eldspýtur til að búa til myndir eins og hér til hliðar. Ef haldið er áfram á sama hátt, hvað þarf þá margar eldspýtur til að búa til svona mynd með 10 eldspýtur á hverri hlið?
Algebrulegu stærðunum $2x+1$, $2x-3$, $x+2$, $x+5$ og $x-3$ má raða
upp þannig að summa þriggja fyrstu er $4x+3$ og summa þriggju síðustu er
$4x+4$. Stærðin í miðjunni er þá