Látum $p$ og $q$ vera ólíkar jákvæðar heiltölur. Sannið: Að
minnsta kosti önnur jafnan
$$x^2+p x+q=0 \quad\quad \text{ eða } \quad\quad x^2+q x+p=0,$$
hefur rauntölulausn.
Gerum ráð fyrir að $a$, $b$ og $c$ séu þrjár núllstöðvar
(rætur) margliðunnar
$p(x)=x^3-19x^2+26x-2$. Reiknið út stærðina
$$
\frac{1}{a}+\frac{1}{b} +\frac{1}{c}.
$$
Í ferningslaga bókaskáp eru tvær jafn þykkar og jafn háar bækur skorðaðar eins og myndin sýnir. Ef hæð skápsins er $1$ lengdareining, hver er þá þykkt bókanna?
Tölurnar $2, 5, 8, 11, 14, \ldots$, eru skrifaðar í röð í bók þannig
að á hverri síðu er 100 tölur. Byrjað er að skrifa efst á síðu $7$. Á
hvaða síðu lendir talan $11.111$?