Gefnar eru $n$ tölur, ein er jöfn $1-\frac{1}{n}$ og hinar eru allar jafnar $1$. Hvert er meðaltal talnanna?
Meðaltal talnanna er $$\frac{\big(1-\frac{1}{n}\big)+(n-1)\cdot 1}{n} =\frac{n-\frac{1}{n}}{n}=1-\frac{1}{n^2}.$$
Þegar grunnlína þríhyrnings er lengd um $10\%$ og hæð hans á grunnlínu er minnkuð um $10\%$, þá verður flatarmálið
Táknum lengd grunnlínu í upphaflega þríhyrningnum með $g$ og hæðina á hana með $h$. Flatmál upphaflega þríhyrningsins er $F_0=\frac{1}{2}gh$. Grunnlína nýja þríhyrningsins er $1,1\cdot g$ og hæðin á hana er $0,9\cdot h$. Flatarmál nýja þríhyrningsins er þá $\frac{1}{2}(1,1\cdot g)(0,9\cdot h)=\text{0,99}\cdot\frac{1}{2}gh = \text{0,99}\cdot F_0$ eða $1\%$ minna en flatarmál þess upphaflega.
Talan $\left(0,1 + \frac{1}{0,1}\right)^2$ er jöfn
Höfum að $$\left(0,1+\frac{1}{0,1}\right)^2=(0,1+10)^2 =0,01+2+100=102,01.$$
Gildið á $6(12-3^2)-14$ er
Höfum að $$6(12-3^2)-14=6(12-9)-14=6\cdot 3-14=18-14=4.$$