
The 23rd Nordic Mathematical Contest
Thursday April 2, 2009

English version with solutions

Time allowed is 4 hours. Each problem is worth 5 points. The only permitted aids
are writing and drawing tools.

Problem 1

A point P is chosen in an arbitrary triangle. Three lines are drawn through P which
are parallel to the sides of the triangle. The lines divide the triangle into three smaller
triangles and three parallelograms. Let f be the ratio between the total area of the
three smaller triangles and the area of the given triangle. Show that f ≥ 1

3
and

determine those points P for which f = 1
3
.

Problem 2

On a faded piece of paper it is possible, with some effort, to discern the following:

(x2 + x + a)(x15 − . . .) = x17 + x13 + x5 − 90x4 + x− 90.

Some parts have got lost, partly the constant term of the first factor of the left side,
partly the main part of the other factor. It would be possible to restore the polynomial
forming the other factor, but we restrict ourselves to asking the question: What is
the value of the constant term a? We assume that all polynomials in the statement
above have only integer coefficients.

Problem 3

The integers 1, 2, 3, 4 and 5 are written on a blackboard. It is allowed to wipe out
two integers a and b and replace them with a + b and ab. Is it possible, by repeating
this procedure, to reach a situation where three of the five integers on the blackboard
are 2009?

Problem 4

There are 32 competitors in a tournament. No two of them are equal in playing
strength, and in a one against one match the better one always wins. Show that the
gold, silver, and bronze medal winners can be found in 39 matches.



Solution 1
Because the sides are parallel, all the three
smaller triangles are similar to the given
triangle. Let h be the length of a height
in the given triangle and g be the length
of the belonging base. The corresponding
numbers in the three smaller triangles are
hi and gi for i = 1, 2, 3. Because of the
similarity there exist a number

k =
h

g
=

h1

g1

=
h2

g2

=
h3

g3

.
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Also it is easily seen that g = g1 + g2 + g3 and h = h1 + h2 + h3. We have

f ≥ 1

3
⇔ 1

2
hg ≤ 3 · 1

2
(h1g1 + h2g2 + h3g3)

⇔ (h1 + h2 + h3)(g1 + g2 + g3) ≤ 3(h1g1 + h2g2 + h3g3)

The last inequality is Chebyshev’s inequality (because hi ≤ hj ⇔ gi ≤ gj) and
equality holds if and only if hi = 1

3
h and gi = 1

3
g with i = 1, 2, 3.

Without using Chebyshev’s inequality we could proceed in this way:

(h1 + h2 + h3)(g1 + g2 + g3) ≤ 3(h1g1 + h2g2 + h3g3)

⇔ (kg1 + kg2 + kg3)(g1 + g2 + g3) ≤ 3(kg2
1 + kg2

2 + kg2
3)

⇔ 2(g2
1 + g2

2 + g2
3)− 2(g1g2 + g2g3 + g3g1) ≥ 0

⇔ (g1 − g2)
2 + (g2 − g3)

2 + (g1 − g3)
2 ≥ 0

The conclusion is as before.

Let f = 1
3
. Let M be the midpoint of the base corresponding to g1 in the smaller

triangle. Since g2 = g3 we also have that M is the midpoint of the base corresponding
to g in the given triangle. A multiplication by a factor three from the point M carries
the smaller triangle into the given triangle (since the two triangles are similar and
base g1 carries to the base g). Hence PM is a median in the given triangle and since
P is carried into a vertex in the given triangle by the multiplication of three from M ,
we conclude that P is the centroid of the given triangle.

Alternative: It is possible to arrive at the inequality just by considering ratios: Let
x1, x2, x3, and x be the lengths of parallel sides of the three small triangles and the
given triangle. Then it is easy to see that x = x1 +x2 +x3. And because the triangles
are all similar, the ratio of the area of a small triangle to the area of given triangle is
(xi/x)2, for i = 1, 2, 3. So

f =
(x1

x

)2

+
(x2

x

)2

+
(x3

x

)2

=
x2

1 + x2
2 + x2

3

(x1 + x2 + x3)2
≥ 1

3

where the inequality follows from the relation between the regular and the square
mean, or the Cauchy-Schwarz inequality, with equality when x1 = x2 = x3.



Solution 2

The answer is a = 2.

We denote the polynomial x2 + x + a with Pa(x), the polynomial forming the other
factor of the left side with Q(x) and the polynomial of the right side with R(x). The
polynomials are integer valued for every integer x. For x = 0 we get Pa(0) = a and
R(0) = −90, so a is a divisor of 90 = 2 · 3 · 3 · 5. For x = −1 we get Pa(−1) = −184,
so a is also a divisor of 184 = 2 · 2 · 2 · 23. The greatest common divisor is 2, so the
only possibilities for a are ±2 and ±1.

If a = 1 we get for x = 1 that P1(1) = 3, while R(1) = 4− 180 = −176 which cannot
be divided by 3. If a = −2 we get for x = 1 that P2(1) = 0, i.e. the left side is equal
to 0, while the right side is equal to R(1) = −176 which is different from 0. Neither
a = 1 nor a = −2 will thus work. It remains to check a = 2 and a = −1.

If a = −1 we get for x = 2 that P1(2) = 5, so this possiblity can be eliminated by
showing that 5 does not divide R(2). As in the previous cases this can be done by
evaluating R(2). To that end we observe that x4 + 1 is a divisor of R(x), since the
right side may be written as (x4 + 1)(x13 +x− 90). For x = 2 we get x4 + 1 = 17 and
x13 + x− 90 = 8104, neither of which is divisible by 5.

Alternatively, by Fermat’s theorem 24 ≡ 1 (mod 5), so

R(2) = (24)4 · 2 + (24)3 · 2 + 24 · 2 + 2− 90(24 + 1) ≡ 2 + 2 + 2 + 2 ≡ 3 (mod 5)

so P1(2) = 5 does not divide R(2).

Now, the only remaining possibility is that a = 2, i.e. x2 + x + 2 is a divisor of R(x).

Remark: It can be shown that Q(x) = (x4 + 1)(x11 − x10 − x9 + 3x8 − x7 − 5x6 +
7x5 + 3x4 − 17x3 + 11x2 + 23x− 45).

Alternative: Assuming Q(x) = x15−. . .+dx2+cx+b, matching the coffecients of the
lowest terms in the polynomial equation yields ab = −90 and ac+b = 1. This implies
that a is a divisor of 90, and the possible values can then be further eliminated by
checking which divisors yield integer solutions for c in the the second equation. This
reduces the possible values of a to 1, 2, 10,−1,−2,−9,−90. We can then eliminate
10,−2,−9,−90 by considering the coefficient equation ad + c = 0 for the x2 terms.
This leaves −1, 1, and 2 as the only possiblities, but to eliminate a = ±1 with this
method requires us to go through all the coefficient equations, because dividing by 1
or −1 always yields an integer solution and we will therefore not get a contradiction
until in the end.



Solution 3

The answer is no. First notice that in each move two integers will be replaced with
two greater integers (except in the case when the number 1 is wiped out). Notice also
that from the start there are three odd integers. If one chooses to replace two odd
integers on the blackboard, the number of odd integers on the blackboard decreases.
If one chooses to replace two integers, which are not both odd, the number of odd
integers on the blackboard is unchanged. To end up in a situation, where three of
the integers on the blackboard are 2009, then it is not allowed in any move to replace
two odd integers. Hence the number 2009 can only be obtained as a sum a + b.

In the first move that gives 2009 on the blackboard, two integers a and b are chosen
such that a+ b = 2009 and either ab > 2009 or ab = 2008. In the case ab = 2008, one
of the two chosen numbers is equal to 1, and hence 1 will no longer appear on the
blackboard. In either case, the two integers a + b = 2009 and ab that appear in the
creation of the first 2009 cannot be used anymore to create new instances of 2009.
The second 2009 can only be obtained by choosing c and d such that c + d = 2009
and either cd > 2009 or cd = 2008, and just as before, the numbers c + d = 2009 and
cd cannot be used in obtaining the last 2009. So after forming two instances of 2009,
there are four integers on the blackboard that have become useless for obtaining the
third instance. Hence the last integer 2009 cannot be obtained.

Solution 4

We begin by determining the gold medalist using classical elimination, where we
organize 16 pairs and matches, then 8 matches of the winners, 4 matches of the
winners in the second round, then 2 semifinal matches and finally one match, making
31 matches altogether.

Now the second best player must have at some point lost to the best player, and as
there were 5 rounds in the elimination, there are 5 candidates for the silver medal.
Let Ci be the candidate who lost to the gold medalist in round i. Now let C1 and C2

play, the winner play against C3, and so forth. After 4 matches we know the silver
medalist; assume this was Ck.

Now the third best player must have lost against the gold medalist or against Ck or
both. (If the player had lost to someone else, there would be at least 3 better players).
Now Ck won k − 1 times in the elimination rounds, the 5 − k players Ck+1, . . . , C5,
and if k > 1 one player Cj with j < k. So there are either (k − 1) + (5 − k) = 4 or
(k− 1) + (5− k) + 1 = 5 candidates for the third place. At most 4 matches are again
needed to determine the bronze winner.


