Wilf Classification of Mesh Patterns of Short Length

Ingibjörg, Ísak, Lína and Steinunn. Advisor: Henning Arnór Úlfarsson, RU

School of Computer Science, Reykjavik University

November 12, 2011

Permutations

Definition

Let A be a finite, non-empty set. A one-to-one correspondence from A to itself is a permutation. Let $A=\{1,2,\ldots,n\}$ and denote a permutation as a word, $\pi=\pi_1\pi_2\ldots\pi_n$. Let S_n be the set of all permutations of length n.

Example

The word $\pi = 1324$ is a permutation of the set $\{1, 2, 3, 4\}$ with $\pi_1 = 1$, $\pi_2 = 3$, $\pi_3 = 2$ and $\pi_4 = 4$.

Permutations

Definition

Let A be a finite, non-empty set. A one-to-one correspondence from A to itself is a permutation. Let $A=\{1,2,\ldots,n\}$ and denote a permutation as a word, $\pi=\pi_1\pi_2\ldots\pi_n$. Let S_n be the set of all permutations of length n.

Example

The word $\pi=1324$ is a permutation of the set $\{1,2,3,4\}$ with $\pi_1=1, \ \pi_2=3, \ \pi_3=2$ and $\pi_4=4$.

Definition

A classical pattern is a permutation in S_k .

Example

The pattern 231 can be drawn as follows, where the horizontal lines represent the values and the vertical ones denote the positions in the pattern.

Classical patterns

Definition

A classical pattern is a permutation in S_k .

Example

The pattern 231 can be drawn as follows, where the horizontal lines represent the values and the vertical ones denote the positions in the pattern.

Occurrence/avoidance of patterns

Definition

We say that a pattern occurs in a permutation if there is a subsequence whose letters are in the same relative order of size as the letters of the pattern. If a pattern does not occur in a permutation, the permutation avoids the pattern.

Occurrence/avoidance of patterns

Definition

We say that a pattern occurs in a permutation if there is a subsequence whose letters are in the same relative order of size as the letters of the pattern. If a pattern does not occur in a permutation, the permutation avoids the pattern.

Example

The permutation 362451 contains the pattern 231 =

Definition

For a vincular pattern, also called generalized patterns, to occur in a permutation, the pattern may require letters to be adjacent in the permutation.

Vincular patterns

Definition

For a vincular pattern, also called generalized patterns, to occur in a permutation, the pattern may require letters to be adjacent in the permutation.

Example

The permutation on the left, 426351, contains the vincular pattern 1-23 = 4000 and the permutation on the right, 634251, avoids the pattern

Bivincular patterns

Definition

A bivincular pattern is a pattern that can put constraints on positions and values in a permutation.

Bivincular patterns were first introduced by Bousquet-Mélou, Claesson, Dukes

Bivincular patterns

Definition

A bivincular pattern is a pattern that can put constraints on positions and values in a permutation.

Example

The permutation on the left, 243615, contains the pattern

 $\overline{1-23} = \frac{1}{1-2}$ and the permutation on the right, **43526**1, avoids the pattern

Bivincular patterns were first introduced by Bousquet-Mélou, Claesson, Dukes

Mesh patterns

Definition

A mesh pattern is a pair (τ, R) , where τ is a permutation in S_k and R is a subset of $[0, k] \times [0, k]$.

Example

The permutation on the left, 164235, contains the pattern and the permutation on the right, 165342, avoids the pattern

Mesh patterns

Definition

A mesh pattern is a pair (τ, R) , where τ is a permutation in S_k and R is a subset of $[0, k] \times [0, k]$.

Example

The permutation on the left, 164235, contains the pattern and the permutation on the right, 165342, avoids the pattern

Patterns and Proofs

Definition

Goal

Recall that two patterns p and q are Wilf-equivalent if equally many permutations of length n avoid p and q, for all n.

Wilf-equivalence is one of the big questions in the study of patterns. Our goal was to start the Wilf-classification of mesh patterns.

• Simion, Schmidt Restricted permutations 1985

- Babson, Steingrímsson
 Generalized permutation patterns and a classification of the Mahonian statistics 2000
- Claesson
 Generalized pattern avoidance 2001
- Bousqet-Mélou, Claesson, Dukes, Kitaev
 (2+2)-free posets, ascent sequences and pattern avoiding permutations 2010
- Parviainen
 Wilf classification of bivincular patterns, preprint 2009
- Brändén, Claesson
 Mesh patterns and the expansion of permutation statistics as sums of permutation patterns, 2011

- Simion, Schmidt
- Babson, Steingrímsson Generalized permutation patterns and a classification of the Mahonian statistics 2000
- Claesson Generalized pattern avoidance 2001
- Bousget-Mélou, Claesson, Dukes, Kitaev
- Parviainen
- Brändén, Claesson

• Simion, Schmidt
Restricted permutations 1985

- Babson, Steingrímsson
 Generalized permutation patterns and a classification of the Mahonian statistics 2000
- Claesson
 Generalized pattern avoidance 2001
- ullet Bousqet-Mélou, Claesson, Dukes, Kitaev (2+2)-free posets, ascent sequences and pattern avoiding permutations 2010
- Parviainen
 Wilf classification of bivincular patterns, preprint 2009
- Brändén, Claesson
 Mesh patterns and the expansion of permutation statistics as sums of permutation patterns, 2011

- Simion, Schmidt
 Restricted permutations 1985
- Babson, Steingrímsson
 Generalized permutation patterns and a classification of the Mahonian statistics 2000
- Claesson
 Generalized pattern avoidance 2001
- Bousqet-Mélou, Claesson, Dukes, Kitaev
 (2+2)-free posets, ascent sequences and pattern avoiding permutations 2010
- Parviainen
 Wilf classification of bivincular patterns, preprint 2009
- Brändén, Claesson
 Mesh patterns and the expansion of permutation statistics as sums of permutation patterns, 2011

• We have studied patterns of length 2

- The number of mesh patterns of length 2 is 1024
- We used the mathematics software system Sage to help us sort the patterns by Wilf-equivalence
 - Reverse

Tools

- Complement
- Inverse
- Toric shift
- Up-shift
- The Shading Lemma
- Using these operations we find that there are at most 65 Wilf-classes for mesh patterns of length 2.
- Robert Parviainen had already Wilf-classified bivincular patterns of length 2 (and 3), and thus there are at most 58 Wilf-classes left to prove.

- We have studied patterns of length 2
- The number of mesh patterns of length 2 is 1024
- We used the mathematics software system Sage to help us sort the patterns by Wilf-equivalence
 - Reverse
 - Complement
 - Inverse
 - Toric shift
 - Up-shift
 - The Shading Lemma
- Using these operations we find that there are at most 65 Wilf-classes for mesh patterns of length 2.
- Robert Parviainen had already Wilf-classified bivincular patterns of length 2 (and 3), and thus there are at most 58 Wilf-classes left to prove.

- We have studied patterns of length 2
- The number of mesh patterns of length 2 is 1024
- We used the mathematics software system Sage to help us sort the patterns by Wilf-equivalence
 - Reverse

Tools

- Complement
- Inverse
- Toric shift
- Up-shift
- The Shading Lemma
- Using these operations we find that there are at most 65
- Robert Parviainen had already Wilf-classified bivincular

- We have studied patterns of length 2
- The number of mesh patterns of length 2 is 1024
- We used the mathematics software system Sage to help us sort the patterns by Wilf-equivalence
 - Reverse
 - Complement
 - Inverse
 - Toric shift
 - Up-shift
 - The Shading Lemma
- Using these operations we find that there are at most 65 Wilf-classes for mesh patterns of length 2.
- Robert Parviainen had already Wilf-classified bivincular patterns of length 2 (and 3), and thus there are at most 58 Wilf-classes left to prove.

- We have studied patterns of length 2
- The number of mesh patterns of length 2 is 1024
- We used the mathematics software system Sage to help us sort the patterns by Wilf-equivalence
 - Reverse
 - Complement
 - Inverse
 - Toric shift
 - Up-shift
 - The Shading Lemma
- Using these operations we find that there are at most 65 Wilf-classes for mesh patterns of length 2.
- Robert Parviainen had already Wilf-classified bivincular patterns of length 2 (and 3), and thus there are at most 58 Wilf-classes left to prove.

Definition

Let [i, j] denote the box whose corners have coordinates (i, j), (i, j + 1), (i + 1, j + 1) and (i + 1, j).

Lemma (The Shading Lemma)

Let (τ, R) be a mesh pattern of length n such that $\tau(i) = i$ and $[i,j] \notin R$. If all of the following conditions are satisfied:

- The box [i-1, j-1] is not in R;
- At most one of the boxes [i, j-1], [i-1, j] is in R;
- If the box $[\ell, j-1]$ is in R ($\ell \neq i-1, i$) then the box $[\ell, j]$ is also in R;
- If the box $[i-1,\ell]$ is in R $(\ell \neq j-1,j)$ then the box $[i,\ell]$ is also in R:

then the patterns (τ, R) and $(\tau, R \cup \{[i, j]\})$ are equivalent. Analogous conditions determine if the other neighboring boxes can be added to R.

Example

Example

Example

Example

Example

Example

Example

The Shading Lemma

Example

This equivalence is also found by using the Shading Lemma

Basic Definitions

Representative	Formula	# of patterns	
	1	28	
21	(n-1)!	40	
	$a_n = n \cdot a_{n-1} - a_{n-2}$	32	
	$a_n = (n-1)a_{n-1} + (n-2)a_{n-2}$	32	
	$[x^n]\left(1-\frac{1}{\sum_n n! x^n}\right)$	4	
	$\sum_{i=1}^{n-1} \frac{(n-1)!}{i}$	84	N I REVA
	$\left[\frac{x^n}{n}\right]\log\left(1+\sum_{i=1}^n(i-1)!\cdot x^i\right)$	60	

Patterns and Proofs

•0000

Basic Definitions

Representative	Formula	# of patterns
	$n! - \sum_{i=1}^{n-1} \sum_{\ell=1}^{i} (i-\ell)!(n-i-\ell)!\ell!$	4
		4
	$n! - \sum_{i=0}^{n-2} i!(n-1-i)!$	16
	$n! - \sum_{k=1}^{n-1} (k-1)!(n-k-1)!$	24
	$n! - (n-1)! + [x^n] \frac{F(x)}{1+xF(x)}$	8
	where $F(x) = \sum_{n \geq 0} n! x^n$	OLINN I RELATIVE

Patterns and Proofs

00000

for all n.

for all n.

for all n.

for all n.

for all n.

Definition

Proofs

A fixed point $\pi(k) = k$ is called a strong fixed point if we have $\pi(i) < k$ for i < k and $\pi(j) > k$ for j > k.

A strong fixed point in a permutation π is one that is both a left-to-right maximum and a right-to-left minimum. This is the same as π containing the pattern

Permutations containing the pattern

are those starting with the letter 1 and have a strong fixed point. Therefore the number of permutations that avoid the pattern is

$$n! - (n-1)! + [x^n] \frac{F(x)}{1 + xF(x)}$$

where
$$F(x) = \sum_{n>1} (n-1)! x^{n-1}$$
.

Future Work

At this point we have found formulas for the number of permutations avoiding 776 patterns out of the 1024 we started with.

Outcome

- Intro article about pattern avoidance in Verpill
- New translations added to the Icelandic mathematical dictionary
- Code for Sage
- Accepted to Permutation Patterns 2011, a conference in California June 20-24

Outcome

- Intro article about pattern avoidance in Verpill
- New translations added to the Icelandic mathematical dictionary
- Code for Sage
- Accepted to Permutation Patterns 2011, a conference in California June 20-24

- Intro article about pattern avoidance in Verpill
- New translations added to the Icelandic mathematical dictionary
- Code for Sage
- Accepted to Permutation Patterns 2011, a conference in California June 20-24

- Intro article about pattern avoidance in Verpill
- New translations added to the Icelandic mathematical dictionary
- Code for Sage
- Accepted to Permutation Patterns 2011, a conference in California June 20-24

Thank you!

Any questions?

