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Permutations

Permutations

Definition

Let A be a finite, non-empty set. A one-to-one correspondence
from A to itself is a permutation. Let A = {1, 2, . . . , n} and denote
a permutation as a word, π = π1π2 . . . πn. Let Sn be the set of all
permutations of length n.

Example

The word π = 1324 is a permutation of the set {1, 2, 3, 4} with
π1 = 1, π2 = 3, π3 = 2 and π4 = 4.
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Classical patterns

Classical patterns

Definition

A classical pattern is a permutation in Sk .

Example

The pattern 231 can be drawn as follows, where the horizontal
lines represent the values and the vertical ones denote the positions
in the pattern.

231 =



Basic Definitions The Research Patterns and Proofs Future Work

Classical patterns

Classical patterns

Definition

A classical pattern is a permutation in Sk .

Example

The pattern 231 can be drawn as follows, where the horizontal
lines represent the values and the vertical ones denote the positions
in the pattern.

231 =



Basic Definitions The Research Patterns and Proofs Future Work

Classical patterns

Occurrence/avoidance of patterns

Definition

We say that a pattern occurs in a permutation if there is a
subsequence whose letters are in the same relative order of size as
the letters of the pattern. If a pattern does not occur in a
permutation, the permutation avoids the pattern.

Example

The permutation 362451 contains the pattern 231 =
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Vincular patterns

Vincular patterns

Definition

For a vincular pattern, also called generalized patterns, to occur in a
permutation, the pattern may require letters to be adjacent in the
permutation.

Example

The permutation on the left, 426351, contains the vincular pattern

1-23 = and the permutation on the right, 634251, avoids the

pattern

Vincular patterns were first defined by Babson and Steingŕımsson in 2000
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Bivincular patterns

Bivincular patterns

Definition

A bivincular pattern is a pattern that can put constraints on positions
and values in a permutation.

Example

The permutation on the left, 243615, contains the pattern

1− 23 = and the permutation on the right, 435261, avoids the

pattern

Bivincular patterns were first introduced by Bousquet-Mélou, Claesson, Dukes

and Kitaev in 2010
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Mesh patterns

Mesh patterns

Definition

A mesh pattern is a pair (τ,R), where τ is a permutation in Sk

and R is a subset of J0, kK× J0, kK.

Example

The permutation on the left, 164235, contains the pattern

and the permutation on the right, 165342, avoids the pattern

Mesh patterns were first introduced by Brändén and Claesson in 2010
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Basic Definitions The Research Patterns and Proofs Future Work

Goal

Definition

Recall that two patterns p and q are Wilf-equivalent if equally
many permutations of length n avoid p and q, for all n.

Wilf-equivalence is one of the big questions in the study of
patterns. Our goal was to start the Wilf-classification of mesh
patterns.
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Existing research on Wilf-equivalence

Simion, Schmidt
Restricted permutations 1985

Babson, Steingŕımsson
Generalized permutation patterns and a classification of the
Mahonian statistics 2000

Claesson
Generalized pattern avoidance 2001

Bousqet-Mélou, Claesson, Dukes, Kitaev
(2 + 2)-free posets, ascent sequences and pattern avoiding
permutations 2010

Parviainen
Wilf classification of bivincular patterns, preprint 2009

Brändén, Claesson
Mesh patterns and the expansion of permutation
statistics as sums of permutation patterns, 2011
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Tools

We have studied patterns of length 2

The number of mesh patterns of length 2 is 1024

We used the mathematics software system Sage to help us
sort the patterns by Wilf-equivalence

Reverse
Complement
Inverse
Toric shift
Up-shift
The Shading Lemma

Using these operations we find that there are at most 65
Wilf-classes for mesh patterns of length 2.

Robert Parviainen had already Wilf-classified bivincular
patterns of length 2 (and 3), and thus there are at most
58 Wilf-classes left to prove.
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The Shading Lemma

Definition

Let [i , j ] denote the box whose corners have coordinates
(i , j), (i , j + 1), (i + 1, j + 1) and (i + 1, j).

Lemma (The Shading Lemma)

Let (τ,R) be a mesh pattern of length n such that τ(i) = j and
[i , j ] 6∈ R. If all of the following conditions are satisfied:

The box [i − 1, j − 1] is not in R;

At most one of the boxes [i , j − 1], [i − 1, j ] is in R;

If the box [`, j − 1] is in R (` 6= i − 1, i ) then the box [`, j ] is also in
R;

If the box [i − 1, `] is in R (` 6= j − 1, j) then the box [i , `] is also in
R;

then the patterns (τ,R) and (τ,R ∪ {[i , j ]}) are equivalent. Analogous
conditions determine if the other neighboring boxes can be added to R.
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The Shading Lemma

Example

The following equivalence is found by using the Shading Lemma
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Wilf-classes

Representative Formula # of patterns

1 28

(n − 1)! 40

an = n · an−1 − an−2 32

an = (n − 1)an−1 + (n − 2)an−2 32

[xn]
(

1− 1∑
n n!xn

)
4∑n−1

i=1
(n−1)!

i 84

[ x
n

n ] log
(
1 +

∑n
i=1(i − 1)! · x i

)
60
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Wilf-classes

Representative Formula # of patterns

n!−
∑n−1

i=1

∑i
`=1(i − `)!(n − i − `)!`! 4

n!−
∑n−2

k=0

∑k
j=0 j!(k − j)!(n − 2− k)! 4

n!−
∑n−2

i=0 i !(n − 1− i)! 16

n!−
∑n−1

k=1(k − 1)!(n − k − 1)! 24

n!− (n − 1)! + [xn] F (x)
1+xF (x) 8

where F (x) =
∑

n≥0 n!xn
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Proofs

There is exactly one permutation of length n avoiding the following
pattern

for all n.

Example

The permutation 624153 contains the pattern
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Proofs

Definition

A fixed point π(k) = k is called a strong fixed point if we have
π(i) < k for i < k and π(j) > k for j > k.

A strong fixed point in a permutation π is one that is both a
left-to-right maximum and a right-to-left minimum. This is the
same as π containing the pattern
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Proofs

Permutations containing the pattern

are those starting with the letter 1 and have a strong fixed point.
Therefore the number of permutations that avoid the pattern is

n!− (n − 1)! + [xn]
F (x)

1 + xF (x)

where F (x) =
∑
n≥1

(n − 1)!xn−1.
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Future Work

At this point we have found formulas for the number of
permutations avoiding 776 patterns out of the 1024 we started
with.
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Future Work

Outcome

Intro article about pattern avoidance in Verpill

New translations added to the Icelandic mathematical
dictionary

Code for Sage

Accepted to Permutation Patterns 2011, a conference in
California June 20-24
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Thank you!
Any questions?
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